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Optimal Linearization via Quadratic Programming
Junjie Shen1 and Dennis Hong1

Abstract—The technique of linearization for nonlinear systems
around some operating point has been widely used for analysis
and synthesis of the system behavior within a certain operating
range. Conventional linearization methods include the analytical
linearization (AL) method using the Jacobian matrix, the result
of which usually works only for a sufficiently small region, as
well as the numerical linearization (NL) method based on small
perturbation, the accuracy of which is usually not guaranteed.
In this letter, we propose an optimal linearization method via
quadratic programming (OLQP). We start with uniform data
sampling within the neighborhood of the operating point based
on the nonlinear ordinary differential equation (ODE). We then
find the best linear model that fits to these sample points with
a QP formulation. The OLQP solution is derived in closed form
with proved convergence to the AL solution. Two examples of
nonlinear systems are investigated in terms of linearization and
results are compared among these linearization methods, which
has shown the proposed OLQP method features a great balance
between model accuracy and computational complexity. More-
over, the OLQP method offers additional options in controller
design by tuning its parameters.

Index Terms—Optimization and optimal control, performance
evaluation and benchmarking.

I. INTRODUCTION

ALMOST all systems in reality are nonlinear. However,
there are much more well-established analysis and syn-

thesis tools for linear systems due to simplicity. The technique
of linearization is accordingly developed and widely used to
approximate the nonlinear system by a corresponding linear
model so that linear system theories can be readily applied
to the nonlinear system. This approach of studying nonlinear
systems has been proved effective in many applications, e.g.,
stability analysis of equilibrium point [1]. We herein review
the existing linearization methods.

A. Review of Linearization Methods
Consider a nonlinear system governed by a nonlinear ordi-

nary differential equation (ODE):

ẋ = f(x,u), (1)

where x ∈ Rn is the vector of state variables, u ∈ Rm is
the vector of control inputs, and f : Rn × Rm → Rn is a
nonlinear function. Suppose the function f is continuously
differentiable at some operating point (xo,uo) ∈ Rn × Rm,
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then the system can be linearized about this point using the
following methods:

1) Analytical Linearization (AL)
Define deviation variables ∆x = x−xo and ∆u = u−uo.

The AL solution of the original nonlinear system (1) about the
operating point (xo,uo) is thus given by

∆ẋ = A∆x+B∆u, (2)

where

A =
∂f

∂x

∣∣∣∣
(x,u)=(xo,uo)

∈ Rn×n (3a)

and

B =
∂f

∂u

∣∣∣∣
(x,u)=(xo,uo)

∈ Rn×m (3b)

are the constant Jacobian matrices. The AL solution captures
the most accurate dynamic information around the operating
point in a linear manner. However, the range within which the
linear approximation is valid is unknown and usually small
[2]. In addition, it is sometimes tedious to compute it out in
terms of symbolic calculations. Fortunately, we have automatic
differentiation (AD) [3] tool which can numerically evaluate
the exact AL solution.

2) Numerical Linearization (NL)
Starting from xo, two other state vectors can be created,

e.g., x+
i = xo + hei and x−i = xo − hei, i = 1, . . . , n,

where ei ∈ Rn is the standard basis vector with its ith entry
equal to 1 and 0 for the rest, and h ∈ R is a small positive
perturbation. That is, the ith component of the state vector
x±i is perturbed from xo by ±h. By further setting u = uo,
their time-derivatives can be calculated from (1) as ẋo, ẋ+

i ,
and ẋ−i , respectively. The ith column of the matrix A of (3a),
denoted as ai, can thus be approximated by

ai ≈
(
ẋ+
i − ẋo

)
/h (4a)

for a forward-difference approximation (FDA), or

ai ≈
(
ẋo − ẋ−i

)
/h (4b)

for a backward-difference approximation (BDA), or

ai ≈
(
ẋ+
i − ẋ

−
i

)
/(2h) (4c)

for a central-difference approximation (CDA) [4], [5]. The
matrix B of (3b) can also be approximated in a similar way
by perturbing the control inputs one after another while fixing
x = xo. It is really straightforward to apply the NL method
but the accuracy is usually not guaranteed.
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3) Statistical Linearization (SL)
SL method [6], [7] determines the constant matrices A and

B jointly by minimizing the expectation

E
[
‖f(zo + ξ)− f(zo)−Wξ‖22

]
(5a)

with respect to W = [A B], where zo =
[
xT
o ,u

T
o

]T
, ‖.‖2 is

the Euclidean norm, and ξ is a vector of random variables with
zero mean and covariance matrix Ξ = E

[
ξξT

]
. The unique

optimal solution is given by

W ∗ = E
[
(f (zo + ξ)− f (zo)) ξT

]
Ξ−1. (5b)

The random vector ξ under consideration is usually jointly
Gaussian, e.g., with zero mean and variance h for each
entry. Although the SL solution is on average closer to the
given nonlinear system, it gets much more computationally
expensive in terms of expectation calculation, not to mention
the tremendous number of dimensions for practical systems.

4) Least Squares Optimal Linearization (LSOL)
LSOL method [2], [8], [9] determines the constant matrices

A and B jointly by minimizing the integral∫
Z

‖f(zo + z)− f(zo)−Wz‖22 dz (6a)

with respect to W = [A B] over some finite region of
interest Z around zo, e.g., a hypercube of edge 2h, where
z =

[
∆xT ,∆uT

]T
. The unique optimal solution is given by

W ∗=

(∫
Z

(f(zo+z)−f(zo))zTdz
)(∫

Z

zzTdz
)−1

. (6b)

One can consider the LSOL method similar to the SL method
but with a uniform distribution instead. Compared with SL,
LSOL performs better in terms of competent model accuracy
yet with less computational complexity.

5) Optimal Linearization via Domain Densification (OLDD)
OLDD method [10] determines the constant matrices A and

B jointly by minimizing the summation∑
zs∈S

‖f(zo + zs)− f(zo)−Wzs‖22 (7a)

with respect to W = [A B] for a given finite set S of points
zs =

[
∆xT

s ,∆u
T
s

]T
around zo. The set S is constructed

from an h-dense curve via domain densification and the unique
optimal solution is given by

W ∗=

(∑
zs∈S

(f(zo+zs)−f(zo)) zTs

)(∑
zs∈S

zsz
T
s

)−1
(7b)

as a multiple linear regression problem. The OLDD method
expresses optimal linearization as a parameter identification
problem, which makes it in high dimensions more tractable
than using multiple integrals in the LSOL method. However,
domain densification is unable to collect the points evenly over
the region of interest, i.e., model accuracy is mediocre and yet
dependent on the order of the states and controls.

6) Other Methods

In this letter, we are only interested in finding the best linear
approximation to a nonlinear system with the same states and
controls around some operating point, and thus the following
linearization methods are out of scope:

• Trajectory-Based Optimal Linearization [11], [12], [13]
optimizes the linear approximation to a particular solution
of (1) from a given initial condition to the final state. That
is, a trajectory with respect to time is linearized instead
of a region of states and controls.

• Feedback Linearization [14], [15] method algebraically
transforms a nonlinear system into a linear one with com-
pletely different dynamic interpretation. In addition, the
number of dimensions usually increases if the nonlinear
ODE is not an affine function of control inputs.

• System Identification [16], [17] technique estimates the
model parameters by minimizing the error between the
model output and the measured response, which is thus
similar to the trajectory-based optimal linearization and
only works for the stable equilibrium point at best.

B. Motivation & Contribution

The conventional AL method only captures the linear term
in a Taylor series expansion of a nonlinear function around the
operating point. Therefore, the resulting linear model usually
works only for sufficiently small variations of states and
controls. However, in some practical applications [2], [10],
linear analysis and synthesis are desired to be applied to
a much larger region of interest. The NL, SL, LSOL, and
OLDD methods can be readily adapted to different ranges
of states and controls by manipulating the parameter h, but
they are subject to the trade-off between model accuracy and
computational complexity.

Inspired by the previous work, this letter now presents a
novel optimal linearization method via quadratic programming
(OLQP), which features a great balance between model ac-
curacy and computational complexity. Over specified ranges
of states and controls around the operating point, the OLQP
method finds the best linear approximation to a given nonlinear
function by fitting the linear model to the data points uniformly
sampled within the region, which makes it more accurate than
the AL, NL, and OLDD methods in predicting the nonlinear
behavior, while less computationally expensive than the SL
and LSOL methods. In addition, the OLQP method consists
with the AL method in that as the region of interest gets
smaller, its solution is proved to converge to the AL solution.
Therefore, AL can be viewed as a special case of OLQP and
it can be used for Jacobian estimation. Lastly, it has shown
that the OLQP method offers additional options in controller
design by tuning its parameters.

The rest of this letter is organized as follows. Section II
illustrates the proposed OLQP method. Section III benchmarks
OLQP method against other linearization methods using the
rigid-body aircraft model. Section IV investigates the control
system behavior based on the OLQP linear model for the well-
known cart-pole system. Section V concludes the letter with
potential future directions.
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II. OPTIMAL LINEARIZATION VIA
QUADRATIC PROGRAMMING

This section details the proposed OLQP method. We start
with the uniform data sampling strategy, then formulate linear
approximation to an optimization problem, later convert it into
a QP problem, derive its optimal solution, afterwards prove
its convergence to the AL solution, and finally simplify the
calculation for most practical systems of interest.

A. Data Sampling
We can observe in the linear model (2) that the state vector

x and control input u are decoupled. Accordingly, let’s first
define the neighborhood of (xo,uo) separately by

O = {(x,u) | u = uo, ‖x− xo‖∞ ≤ h}, (8a)
Q = {(x,u) | x = xo, ‖u− uo‖∞ ≤ h}, (8b)

where ‖·‖∞ is the infinity norm selecting the largest absolute
value among all the entries of a vector. O and Q essentially
capture the state and control space around (xo,uo) bounded
by a hypercube of edge 2h. The edges for all the states and
controls do not need to be set equal in general. Here we are
just making it comparable with other methods.

To make the problem finite dimensional, one simple data
sampling strategy is that we can uniformly collect points from
O and Q, which yields

R = {(x,u) | u = uo, x
(i) = x(i)

o − h+ (j − 1)∆h,

i = 1, . . . , n, j = 1, . . . , N} , (9a)

S = {(x,u) | x = xo, u
(i) = u(i)

o − h+ (j − 1)∆h,

i = 1, . . . ,m, j = 1, . . . , N} , (9b)

respectively, where ∆h is the resolution, N = 2h/∆h+1 ≥ 2

is thus the number of points on the edge, and (·)(i) denotes for
the ith entry. Note that there are a total number of Nn points
sampled in R and Nm points in S. Again, the resolutions do
not need to be set equal in general.

Finally, two sets of data points are created. The first set is

T = {(∆x,∆u,∆ẋ) | ∆x = x− xo, ∆u = u− uo,

∆ẋ = f(x,u)− f(xo,uo), (x,u) ∈ R}, (10a)

and the second set is

V = {(∆x,∆u,∆ẋ) | ∆x = x− xo, ∆u = u− uo,

∆ẋ = f(x,u)− f(xo,uo), (x,u) ∈ S}, (10b)

which will eventually be utilized in the OLQP method.

B. Problem Formulation
Given the nonlinear system (1) with some operating point

(xo,uo) as well as the linear model (2) around that point,
the goal is to determine the matrices A and B such that
the difference between them is minimized over the region of
interest. Define the difference

d = f(x,u)− f(xo,uo)−A∆x−B∆u. (11)

For every element (∆x,∆u,∆ẋ)k ∈ T , k = 1, . . . , Nn, the
difference is reduced to

dk = ∆ẋk −A∆xk, (12a)

while for each element (∆x,∆u,∆ẋ)l ∈ V , l = 1, . . . , Nm,
the difference is reduced to

dl = ∆ẋl −B∆ul. (12b)

Using the squared Euclidean norm ‖d‖22 = dTd as a measure
of the difference, the minimization of the total difference J
can be formulated as

minimize
A,B

J =

Nn∑
k=1

‖dk‖22 +

Nm∑
l=1

‖dl‖22 (13)

=

Nn∑
k=1

‖∆ẋk −A∆xk‖22 +

Nm∑
l=1

‖∆ẋl −B∆ul‖22,

which can essentially be decoupled in terms of A and B.

C. QP Formulation
A typical formulation for a mathematical QP problem can

be written as follows:

minimize
z

1

2
zTPz + qTz + c

subject to Gz � w,
(14)

where c ∈ R, z, q ∈ Rn, w ∈ Rm, P ∈ Rn×n is symmetric
positive semidefinite, and G ∈ Rm×n [18]. If the problem is
unconstrained and q ∈ R (P ), it is simple enough to have the
well-known analytical solution z∗ = −P †q, where P † is the
pseudo-inverse of P . We will now show (13) is essentially a
QP problem.

Let’s first rewrite (12a) as

dk = ∆ẋk −∆Xka, (15a)

where

∆Xk =


∆xT

k 0 · · · 0

0 ∆xT
k

. . .
...

...
. . . . . . 0

0 · · · 0 ∆xT
k

 ∈ Rn×n2

, (15b)

a = vec
(
AT
)
∈ Rn2

. (15c)

That is, ∆Xk is a block diagonal matrix with n blocks of
∆xT

k and a is the vectorization of the matrix AT . Similarly,
(12b) can be rewritten as

dl = ∆ẋl −∆Ulb, (16a)

where

∆Ul =


∆uT

l 0 · · · 0

0 ∆uT
l

. . .
...

...
. . . . . . 0

0 · · · 0 ∆uT
l

 ∈ Rn×mn, (16b)

b = vec
(
BT
)
∈ Rmn. (16c)

Substituting (15a) and (16a) into the cost function J yields

J =

Nn∑
k=1

‖∆ẋk −∆Xka‖22 +

Nm∑
l=1

‖∆ẋl −∆Ulb‖22
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= aT

(
Nn∑
k=1

∆XT
k ∆Xk

)
︸ ︷︷ ︸

1
2Pa

a+

(
−2

Nn∑
k=1

∆ẋT
k ∆Xk

)
︸ ︷︷ ︸

qT
a

a

+ bT

(
Nm∑
l=1

∆UT
l ∆Ul

)
︸ ︷︷ ︸

1
2Pb

b+

(
−2

Nm∑
l=1

ẋT
l ∆Ul

)
︸ ︷︷ ︸

qT
b

b

+

Nn∑
k=1

∆ẋT
k ∆ẋk +

Nm∑
l=1

∆ẋT
l ∆ẋl︸ ︷︷ ︸

c̃

=

[
a
b

]T
︸ ︷︷ ︸

z̃T

[
1
2Pa 0
0 1

2Pb

]
︸ ︷︷ ︸

1
2 P̃

[
a
b

]
︸ ︷︷ ︸

z̃

+

[
qa
qb

]T
︸ ︷︷ ︸

q̃T

[
a
b

]
︸ ︷︷ ︸

z̃

+ c̃.

(17)

Therefore, (13) is equivalent to

minimize
z̃

J =
1

2
z̃T P̃ z̃ + q̃T z̃ + c̃, (18)

which is a QP problem defined by (14) with no constraint.

D. Optimal Solution
With the uniform data sampling strategy as suggested in

Section II-A, it is guaranteed that Pa � 0 and Pb � 0, which
is followed that P̃ � 0 as well. The positive definiteness of the
matrices will be verified later in this subsection. As a result,
the optimal solution is determined to be

z̃∗ = −P̃−1q̃ (19)

for (18) with

a∗ = −P−1a qa, (20a)

b∗ = −P−1b qb. (20b)

The OLQP solution A∗ and B∗ can be further constructed
from (15c) and (16c), respectively. Specifically, let’s first write
out (20a) in detail:

a∗ =

(
Nn∑
k=1

∆XT
k ∆Xk

)−1(
Nn∑
k=1

∆XT
k ∆ẋk

)

=


Σ−1a 0 · · · 0

0 Σ−1a

. . .
...

...
. . . . . . 0

0 · · · 0 Σ−1a



µ1

µ2

...
µn

 , (21a)

where

Σa =

Nn∑
k=1

∆xk∆xT
k , (21b)

µi =
Nn∑
k=1

∆ẋ
(i)
k ∆xk, i = 1, . . . , n. (21c)

The matrix A∗ is then constructed as

A∗ =

 µT
1 Σ−1a

...
µT

nΣ−1a

 =


∑Nn

k=1 ∆ẋ
(1)
k ∆xT

k
...∑Nn

k=1 ∆ẋ
(n)
k ∆xT

k

Σ−1a

=

Nn∑
k=1


∆ẋ

(1)
k

...
∆ẋ

(n)
k

∆xT
k

Σ−1a

=

(
Nn∑
k=1

∆ẋk∆xT
k

)
Σ−1a . (22)

The matrix Σa of (21b) can actually be further simplified to

Σa =

Nn∑
k=1

diag
((

∆x
(1)
k

)2
, . . . ,

(
∆x

(n)
k

)2)
(23)

due to the symmetry of the uniform data sampling strategy,
i.e., all off-diagonal entries cancel out. Moreover, based on
(9a) and (10a) with ∆h = 2h/(N − 1), each diagonal entry

Nn∑
k=1

(
∆x

(i)
k

)2
=Nn−1

N∑
j=1

(−h+ (j − 1) ∆h)
2

=Nn−1
(
Nh2 − 2h∆h

N(N − 1)

2
+ ∆h2

N(N − 1)(2N − 1)

6

)
=
h2Nn(N + 1)

3(N − 1)
, i = 1, . . . , n, (24)

which implies Σa � 0 when N ≥ 2, and thus so is Pa � 0.
Substituting (23) with (24) into (22) yields a simplified form

A∗ =
3(N − 1)

h2Nn(N + 1)

Nn∑
k=1

∆ẋk∆xT
k (25a)

and similarly,

B∗ =
3(N − 1)

h2Nm(N + 1)

Nm∑
l=1

∆ẋl∆u
T
l , (25b)

which essentially eliminates the matrix inversion.

E. Summary of OLQP Method
Given the nonlinear system (1) with some operating point

(xo,uo) as well as the linear model (2) around that point, the
proposed OLQP method follows:

Step 1: Determine the region of interest around (xo,uo), O
of (8a) and Q of (8b), with the parameter h for the
size of the region.

Step 2: Uniformly sample points within the region of interest
to construct the sets R of (9a) and S of (9b), with
the parameter N for the resolution.

Step 3: Create two new sets T of (10a) and V of (10b) based
on R and S, respectively.

Step 4: Compute the optimal linear model A∗ of (25a) and
B∗ of (25b) using T and V , respectively.

Note that for actual implementation, we don’t need to create
the sets T and V exactly. To reduce memory storage, once
the contribution of one sample point is involved, we do not
need to have it anymore.



SHEN AND HONG: OPTIMAL LINEARIZATION VIA QUADRATIC PROGRAMMING 5

F. Convergence to AL Solution
We will now prove the OLQP solution, the matrices A∗ of

(25a) and B∗ of (25b), actually converge to the AL solution,
A of (3a) and B of (3b), when h goes to zero.

Based on (22) with (23), any entry a∗ir in A∗ of row i and
column r is determined to be

a∗ir =

∑Nn

k=1 ∆ẋ
(i)
k ∆x

(r)
k∑Nn

k=1

(
∆x

(r)
k

)2 . (26)

Taking the limit to (26) as h goes to zero yields

lim
h→0

a∗ir = lim
h→0

∑Nn

k=1 ∆ẋ
(i)
k ∆x

(r)
k∑Nn

k=1

(
∆x

(r)
k

)2 . (27)

For any k and r with ∆x
(r)
k 6= 0 we have

lim
h→0

∆ẋ
(i)
k ���

∆x
(r)
k(

∆x
(r)
k

)�2 = lim
h→0

f(xk,uo)(i) − f(xo,uo)(i)

x
(r)
k − x

(r)
o

=
∂f (i)

∂x(r)

∣∣∣∣
(x,u)=(xo,uo)

, (28)

which leads (27) to

lim
h→0

∑Nn

k=1 ∆ẋ
(i)
k ∆x

(r)
k∑Nn

k=1

(
∆x

(r)
k

)2 =
∂f (i)

∂x(r)

∣∣∣∣
(x,u)=(xo,uo)

(29)

as well, and the limit on the right-hand side is exactly the
entry air in A of (3a). Note that (29) holds based on (28) due
to the following lemma:

Consider 4 sequences αn, βn, γn 6= 0, δn 6= 0 with n ∈ N.
If lim

n→∞
αn/γn = lim

n→∞
βn/δn = ρ as well as γn + δn 6= 0,

then lim
n→∞

(αn + βn) / (γn + δn) = ρ. The proof is trivial.
Essentially, (29) is equivalent to

lim
h→0

A∗ = A (30a)

of (3a) and similarly,

lim
h→0

B∗ = B (30b)

of (3b), which proves the convergence.

G. Simplification for Most Practical Systems
So far we have developed the OLQP method using a QP

formulation and proved its convergence to the AL solution,
which is sufficient to be implemented on any general nonlinear
system. Nevertheless, the proposed method can be further
simplified for most practical systems of interest.

Consider the equations of motion taking the form:

M(q)q̈ +C(q, q̇) = Fu, (31)

where q is the vector of generalized coordinates, M(q) stands
for the inertia matrix, the vector C(q, q̇) captures the Coriolis,
centrifugal, and gravitational forces, and the matrix F defines
how the control input u enters the model. We can further

convert (31) into its state-space form as (1), where the state
vector x =

[
qT , q̇T

]T
and

f(x,u) =

[
q̇

g (x,u)

]
=

[
q̇

M(q)−1 (Fu−C(q, q̇))

]
. (32)

We observe that g(x,u) is an affine function of the control
input u. For any well-defined operating point (xo,uo) =([
qTo , q̇

T
o

]T
,uo

)
, the AL solution is thus structured as

A =

[
0 I
A21 A22

]
and B =

[
0
B2

]
, (33a)

where

A21 =
∂g

∂q

∣∣∣∣
(x,u)=(xo,uo)

, A22 =
∂g

∂q̇

∣∣∣∣
(x,u)=(xo,uo)

, (33b)

B2 = M(qo)−1F , (33c)

and I is the identity matrix. Since the matrix B is already in
closed form, there is no need to consider it in the QP anymore,
i.e., simply set B∗ = B of (33a). In addition, the system can
be reduced to

q̈ = g(x,u), (34a)

with the linear model around the operating point

∆q̈ =
[
A21 A22

] [ ∆q
∆q̇

]
+B2∆u, (34b)

where ∆q = q− qo. The proposed OLQP method still works
here since there is no strict requirement for A to be a square
matrix. Once [A∗21 A∗22] is computed, the OLQP solution
A∗ can be constructed from (33a) with B∗ = B.

III. EXAMPLE OF RIGID-BODY AIRCRAFT MODEL

In this section, the rigid-body aircraft model is studied for
the longitudinal motion. The system is linearized around the
equilibrium condition and results are compared among the
linearization methods.

A. Modeling
The following equations describe a rigid-body aircraft in the

longitudinal direction [2]:

mV̇ = T cosα−D −mg sin γ, (35a)
mV γ̇ = T sinα+ L−mg cos γ, (35b)

α̇ = q − γ̇, (35c)
Iyy q̇ = M − xcL cosα− xcD sinα, (35d)

where the state vector x = [V, γ, α, q]T , V is the airspeed,
γ is the flight path angle, α is the angle of attack, q is the
pitch rate; the control input u = [T, δc]

T , T is the thrust, δc is
the canard deflection; the variable L = 0.5CLρV

2S is the lift
force, D = 0.5CDρV

2S is the drag force, M = 0.5CMρV
2Sc

is the pitching moment; the parameter m is the aircraft mass,
g is the gravitational acceleration, Iyy is the moment of inertia
about the y-axis, ρ is the air density, S is the reference area, c
is the mean aerodynamic chord, xc = −0.0465c is the distance
between the aircraft aerodynamic center and the center of
mass; for α > 0, the aerodynamic coefficients are given by
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CL =
∑
Aiα

i + (1/2.235) (δc + α)
∑
Ciα

i, CD =
∑
Biα

i,
CM = (δc + α)

∑
Ciα

i−1.5qc/V , i = 0, . . . , 5. Table I sum-
marizes all the parameters. The equilibrium point of interest is
given by (xe,ue) =

(
[100, 0, 0.0754, 0]T , [12781,−0.124]T

)
.

TABLE I
AIRCRAFT PARAMETERS

m = 10, 617 kg g = 9.81 m/s2 Iyy = 77, 095 kg·m2

ρ = 1.225 kg/m3 S = 57.7 m2 c = 4.4 m
A0 = 0.00933 B0 = 0.02323 C0 = 0.28933
A1 = 3.58977 B1 = 0.03809 C1 = −0.15349
A2 = 4.40752 B2 = 1.64156 C2 = 0.75441
A3 = −16.98693 B3 = 1.65442 C3 = −1.50691
A4 = 13.38188 B4 = −2.30301 C4 = 1.07489
A5 = −3.34885 B5 = 0.55977 C5 = −0.25771

B. Linearization & Jacobian Estimation
The AL solution, or the Jacobian, is determined to be

A =


−2.401× 10−2 −9.81 −10.406 0
1.944× 10−3 0 1.382 0
−1.944× 10−3 0 −1.382 1

0 0 9.622 −1.331

 , (36a)

B =


9.392× 10−5 0
7.093× 10−8 4.192× 10−2

−7.093× 10−8 −4.192× 10−2

0 5.795

 , (36b)

around the equilibrium condition, with eigenvalues λ(A) =
{−4.460, 1.755,−0.0161± 0.152j}. We are first interested in
how well the proposed OLQP method can estimate the AL
solution. Let’s define the difference between them

D =
[
A B

]
−
[
A∗ B∗

]
(37)

with the Frobenius norm ‖D‖F =
√

tr (DTD) as a measure
of the difference. Note that A∗ and B∗ are actually functions
of the parameters h and N , and thus so is D, i.e., A∗(h,N),
B∗(h,N), and D(h,N). Fig. 1 shows the difference function
‖D(h,N)‖F for the aircraft example. It is verified that the
OLQP solution approaches the AL solution as h goes to zero,
which is proved in Section II-F. In addition, we can see that
when h is sufficiently small, increasing N , i.e., improving
the resolution of data sampling, does not help too much in
enhancing the accuracy.
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0.2
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0.3

8
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010

0 0.1 0.2 0.3 0.4

Fig. 1. Plot of ‖D‖F as a function of h and N . The difference ‖D‖F
vanishes when h approaches zero. Moreover, when h is sufficiently small, N
does not contribute too much.

Fig. 2 compares how close other linearization solutions are
to the AL solution. The FDA and BDA solutions are very close
to each other while their accuracy is terrible even for small
value of h. The CDA, LSOL, OLDD and OLQP solutions are
all very close to the AL solution even for large value of h
wherein the LSOL solution is the best at estimating the AL
solution for the aircraft example. However, it takes around 40
seconds for the LSOL method according to Table II, which
further compares the average running time of each method
for computing the linear model 100 times on an Intel Core
i7-7700HQ@2.80 GHz quad-core laptop. It is clear that the
proposed OLQP method is a great choice for Jacobian esti-
mation in consideration of both accuracy and computational
complexity. Note that the OLDD method depends on the order
of the states and controls so only two arbitrary cases are
considered; MATLAB’s dlgradient function is used for AD
calculation; the SL method is not involved because it cannot
handle the problem dimension and nonlinearity.

TABLE II
AVERAGE RUNNING TIME

OLQP (N = 2) 7.9 ms FDA 7.3 ms LSOL 40.4 s
OLQP (N = 6) 15.6 ms BDA 7.3 ms OLDD 18.6 ms

QLQP (N = 10) 56.6 ms CDA 7.7 ms AL (AD) 265 ms

C. Model Accuracy
We are also interested in how close the OLQP linear

model is to the original nonlinear system in Section III-A,
i.e., how well the OLQP method can predict the nonlinear
behavior, compared against other linearization methods. Since
the equilibrium point of interest is unstable, the following
linear quadratic regulator (LQR) controller is designed for all
the systems, which is based on the AL linear model (36a) and
(36b), with Q = diag(10−4, 1, 10, 1) and R = diag(1, 10).
Numerical simulations are performed for three different values
of ∆α with initial condition x(0) = xe + [0, 0,∆α, 0]T , as
shown in Fig. 3. As ∆α increases, the prediction of AL model
becomes worse, as expected. On the other hand, the LSOL
and OLQP models achieve an overall better description of
the nonlinear system than other methods. Specifically, when
∆α = 0.1 rad, the response of AL model is almost identical
with the nonlinear model; when ∆α = 0.4 rad, they are
on about the same level of closeness; when ∆α = 0.6 rad,

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

Fig. 2. Comparison of Jacobian estimation among the proposed OLQP, NL,
LSOL, and OLDD methods with varying h. The OLQP solution with N = 10
is the second closest for the aircraft example.
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Fig. 3. Comparison of model accuracy among AL, OLQP, NL, LSOL, and OLDD methods with h = 0.4. Numerical simulations are performed for all the
models with three different initial conditions. The LSOL and OLQP models achieve an overall better description of the nonlinear system than other methods.

the LSOL and OLQP models are closer. This makes sense
because the AL model is only valid for a small region,
while the LSOL and OLQP models capture more nonlinear
dynamic information over a specified larger region in an
optimal manner. For this example, the parameter h is fixed
equal to 0.4 and the OLQP model works better when the
states are far away from the equilibrium. Imaging if we have
a varying h and thus a varying OLQP model which depends
on the location of states and controls, a better description of
nonlinear behavior can be expected, which might be worth
working on in the future.

IV. EXAMPLE OF CART-POLE SYSTEM

In this section, the well-known cart-pole system is inves-
tigated. Linearization around the unstable equilibrium point
is carried out with both the AL method and proposed OLQP
method. LQR controller is further designed based on the two
linear models. Corresponding results are compared.

A. Modeling
The equations of motion take the form as (31), where

M(q) =

[
m1 +m2 m2l cos θ
m2l cos θ m2l

2

]
, (38a)

C(q, q̇) =

[
−m2lθ̇

2 sin θ
−m2gl sin θ

]
, Fu =

[
u
0

]
, (38b)

q = [x, θ]T is the vector of generalized coordinates, x is the
position of the cart, θ is the angle of the pole, and the control
force is given by u; the masses of the cart and pole are given
by m1 and m2, respectively, and the length of the pole and
acceleration due to gravity are l and g, respectively. We can
further convert it into its state-space form as (1), where the
state vector x = [θ, ẋ, θ̇]T . Note that the position x actually
does not contribute to the dynamics at all, and thus the total
number of states is reduced to 3. The unstable equilibrium
point of interest is given by (xe, ue) =

(
[0, 0, 0]T , 0

)
.

B. Linearization
Given the operating point (xe, ue) and the parameters m1 =

m2 = 1 kg, l = 10 m, g = 1 m/s2, the AL solution around
this point is determined to be

A =

 0 0 1
−1 0 0
0.2 0 0

 and B =

 0
1
−0.1

 , (39)

with eigenvalues λ(A) =
{

0,±
√

5/5
}

. The OLQP solution
is computed as A∗(h,N) and B∗ = B from Section II-G.

C. Control
Since (A,B) is verified to be controllable and assume all

the states can be measured directly, LQR controller can be
designed based on the linear models to stabilize the pendu-
lum around the upright configuration. Note that the optimal
control u = −Kx, where the gain matrix K is computed
by MATLAB’s lqr command with the weighting matrices
Q = diag(1, 1, 1) and R = 1.

To evaluate the controller performance based on the OLQP
linear model, two aspects are investigated. On the one hand,
the settling time ts for the angle θ, i.e., |θ(t)| ≤ π/1800 for
all t ≥ ts with a fixed initial condition x(0) = [π/9, 0, 0]T ,
is considered as the main property quantifying the system
transient response; on the other hand, the maximum feasible
value for the initial angle θ(0)max, i.e., starting from which
the pendulum can still be stabilized, is regarded as the main
property reflecting the system robustness.

Fig. 4 shows the simulation results of the OLQP method
with varying h and fixed N = 5. First, it is clear that for
small value of h, the LQR controllers of the AL and OLQP
methods behave similarly to each other, due to the two linear
models close to each other. When h becomes larger, as may
be expected, the two linear models get further away from
each other. Specifically for the OLQP method, it essentially
captures the most information of the original nonlinear system



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

Fig. 4. Simulation results of the settling time ts and maximum initial angle
θ(0)max with varying h and fixed N = 5. The closed-loop system is unstable
when h > 3.265, i.e., the OLQP linear model fails to describe the nonlinear
system accurately.

over some region of states and controls around the operating
point, and determines the best linear approximation over the
entire region in an average sense. The effect, for the cart-pole
system, is a trade-off between the system transient response
and robustness when that region gets larger, i.e., h gets larger.
The closed-loop system starts with an improvement in the
transient response as ts decreases and yet a deterioration in the
robustness as θ(0)max decreases as well. Later, the transient
response gets worse while the robustness turns better. Finally,
the system becomes unstable when that region gets too further
away from the operating point, i.e., the OLQP linear model
fails to accurately describe the original nonlinear system.

To sum up, the effect that changing the parameter h in the
proposed OLQP method will result in a trade-off between
the system transient response and robustness, indicates that
the OLQP method actually offers extra options in designing
the controller. It is also reasonable to involve the parameter
N when tuning the controller since it will affect the OLQP
solution as well.

V. CONCLUSION

In this letter, an optimal linearization method via quadratic
programming (OLQP) is presented. It starts with the uniform
data sampling over a specified region of states and controls
around the operating point based on the nonlinear ordinary
differential equation (ODE). The best linear model that fits to
these sample points is then found via a quadratic programming
(QP) formulation.

Compared with other existing linearization methods, the
proposed OLQP method features a great balance between
model accuracy and computational complexity. The OLQP
method is also consistent with the analytical linearization (AL)
method in that as the region of interest becomes smaller
around the operating point, the OLQP solution is proved to
converge to the AL solution. Therefore, AL can be viewed
as a special case of OLQP and it can be used for Jacobian
estimation. Moreover, the OLQP method offers additional
options in controller design since the change in its parameters
has shown a trade-off between the closed-loop system transient
response and robustness. Last but not least, the OLQP method

is applicable to a much larger class of nonlinear functions than
the AL method since its process only involves summations
instead of derivatives, i.e., the function does not even need to
be continuously differentiable at the point of interest.

Many interesting research topics have crossed our mind
based on the OLQP method. For example, how to better de-
scribe the nonlinear system with a state-varying OLQP linear
model, as mentioned in the end of Section III-C. Another one
is that conventional trajectory stabilizer requires a linear time-
varying approximation of the system around the trajectory.
That is, the system is almost linearized at each point along the
entire trajectory. What if we wisely split the state and control
space into several regions and apply the OLQP method for
each region? How can we do that and how will the system
behave differently? We are looking forward to applying the
OLQP method to more examples in the future.
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